Probabilistic Latent Component Analysis and its adjustments to audio signals.

Application to automatic music transcription and source separation.

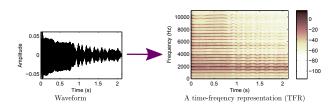
Benoit Fuentes
Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI

Ph.D. defense – Thursday, March 14th 2013

What is automatic transcription of music?

- The goal: a computer program analyzes an audio signal, and identify the notes.
- ▶ One notes: pitch, onset time and duration.
- ▶ A difficult problem: all the played notes are mixed.

Introduction



Observations:

- ▶ harmonic spectra,
- ▶ temporal evolutions: fundamental frequency and spectral envelope,
- presence of noise.

Introduction

Brahms' Clarinet Quintet

Input polyphonic TFR: **V**.

- ▶ Put forward a TFR model $\hat{\mathbf{V}}$, depending on parameters Λ .
- ▶ Find algorithms to estimate Λ , such as:

$$\hat{\mathbf{V}}(\Lambda) \approx \mathbf{V}.$$

The transcription is deduced from Λ .

Introduction

Deterministic vs probabilistic frameworks

▶ Deterministic: minimizing some distance between \mathbf{V} and $\hat{\mathbf{V}}(\Lambda)$ [Lee and Seung 1999].

- ► Probabilistic:
 - V results from a generative process, depending on Λ,
 - ▶ Λ is estimated due to an estimator (e.g. ML).

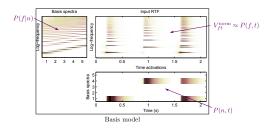
e.g. Probabilistic latent component analysis (PLCA)
[Shashanka 2007].

PLCA: principle

- ► Generative process: drawing of many time-frequency bins $(f,t) \sim P(f,t)$.
- ▶ **V** is the histogram of the draws: $V_{ft}^{\text{norm}} = \frac{V_{ft}}{\sum_{s} V_{ft}} \approx P(f, t)$.
- \triangleright P(f,t) is modeled and depends on Λ .
- Use of EM algorithm to estimate Λ.

How to model P(f, t)?

PLCA: basic model [Shashanka 2007]



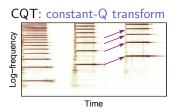
► A column of a CQT: weighted sum of basis spectra (atoms):

$$P(f,t) = \sum_{n} P(n,t)P(f|n) \qquad \Lambda = \{P(n,t), P(f|n)\}.$$

▶ n: a new variable representing an atom (note).

Cannot model notes with time-varying spectra!

Shift-invariant PLCA: introducing the CQT

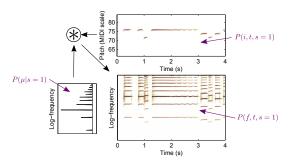


▶ Log. frequency scale: pitch modulation = translation of partials.

A single atom can be used to model different notes.

Shift-invariant PLCA [Smaragdis et. al. 2008]

- ▶ CQT = sum of sources: $P(f,t) = \sum_{s} P(f,t,s)$.
- ▶ Model of one source: $P(f, t, s) = \sum_i P(i, t, s) P(f i|s)$.



Limitation: cannot model variations of spectral envelope.

Contributions

- ► Create new models of CQT that consider:
 - notes having pitch and spectral envelope variations,
 - robust to noise.

Contributions

- Create new models of CQT that consider:
 - notes having pitch and spectral envelope variations,
 - robust to noise.

- ▶ Proposing new tools to improve parameter estimation:
 - can be applied to any CQT model.

Contributions

- ▶ Create new models of CQT that consider:
 - notes having pitch and spectral envelope variations,
 - robust to noise.

- Proposing new tools to improve parameter estimation:
 - can be applied to any CQT model.

- ► Applications:
 - automatic transcription,
 - source separation.

 State of the art
 Improving parameters estimation
 CQT models
 Applications
 Conclusion

 00000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Outline

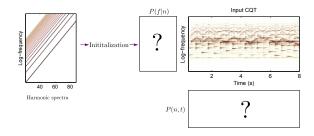
- 1 Introduction
- State of the art
- Improving parameters estimation
- 4 CQT models
- **5** Applications
- 6 Conclusion

Addition of priors

- ► Account for prior information on observation, and therefore on parameters.
- Two advantages:
 - helping the EM algorithm to avoid local maxima,
 - making a model more identifiable.
- ► Four new priors:
 - sparseness.
 - temporal continuity,
 - ► resemblance,
 - monomodality.

Sparse priors

Consider the following problem:



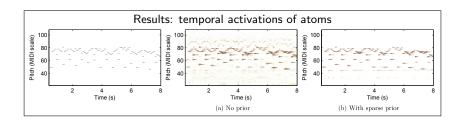
- ▶ The input signal does not necessarily contain all 88 notes.
- Order of the model overestimated.
- ▶ Idea: sparse prior on $P(n, t) = \theta_{nt}$.

Sparse priors

 $I_{1/2}$ -based sparse prior:

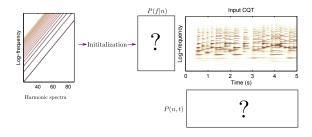
$$Pr\left(oldsymbol{ heta}
ight) \propto \exp\left(-2eta_{ ext{sparse}}||oldsymbol{ heta}||_{1/2}
ight) \quad ext{with} \quad ||oldsymbol{ heta}||_{1/2} = \sum_{n,t} \sqrt{ heta_{nt}}.$$

Rigorous proof for EM derivation.



Temporal continuity priors

Consider the following problem:



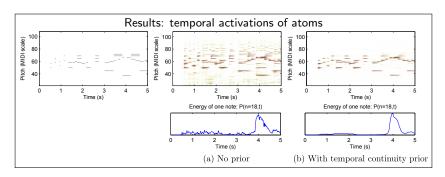
- ▶ What if we suppose $P(n, t) \approx P(n, t 1)$?
- Could help the algorithm converge toward a more meaningful solution.
- ▶ Idea: temporal continuity prior on $P(n, t) = \theta_n^t$.

Temporal continuity prior

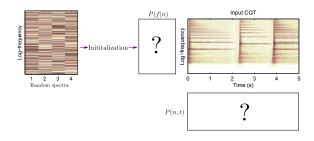
▶ Based on the ratio between geometric and arithmetic mean:

$$Pr(oldsymbol{ heta}) \propto \left(\prod_n \prod_t 2 rac{\sqrt{ heta_n^t heta_n^{t-1}}}{ heta_n^t + heta_n^{t-1}}
ight)^{eta_{ ext{temp}}}$$

Fixed-point method for EM derivation.



► Consider the following problem:



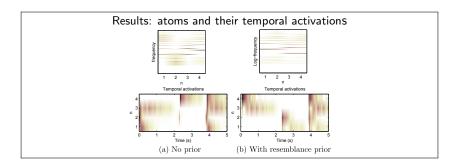
- Modeling notes with variations of spectral envelope: use several atoms per note.
- ► Cluster the atoms beforehand: atoms in one cluster are similar but not equal.
- Resemblance prior: applied to Z adjacent basis spectra $\{P(f|n=1), \ldots, P(f|n=Z)\} = \{\theta_f^1, \ldots, \theta_f^Z\}.$

Resemblance prior

▶ Based on the ratio between geometric and arithmetic mean:

$$Pr(\boldsymbol{\theta}) \propto \left(\prod_{f} \frac{\sqrt[Z]{\prod_{z} \theta_{f}^{z}}}{\frac{1}{Z} \sum_{z} \theta_{f}^{z}} \right)^{Z \beta_{\mathsf{res}}}.$$

► Fixed-point method for EM derivation.



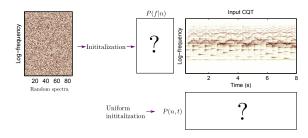
Apply a brake to the convergence of a subset of parameters:

- value at the end of the algorithm: closed to initialization,
- avoid local minima,
- make sparser the parameters that are not slowed down.

Simple to implement and effective.

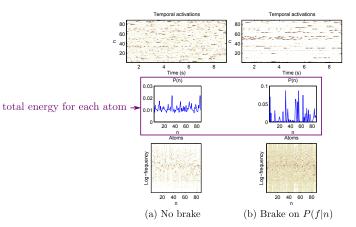
Slowing down the rate of convergence: example

Consider the following problem:



▶ Brake on P(f|n): makes P(n,t) sparser, like the input.

Slowing down the rate of convergence: example



▶ Tools to help the parameter estimations.

Can be used with any PLCA-based model, applied to any set of parameters.

▶ Now: let us design new models of CQT.

Outline

- Introduction
- State of the art
- 3 Improving parameters estimation
- 4 CQT models
- **5** Applications
- 6 Conclusion

Source-based model: HALCA

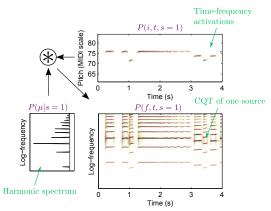
HALCA: Harmonic Adaptive Latent Component Analysis.

- ► Goal: modeling harmonic instruments having time-varying spectra:
 - pitch variations,
 - spectral envelope variations.
- Source-based model, inspired by:
 - shift invariant PLCA [Mysore and Smaragdis 2009],
 - model with harmonic constraint [Vincent et al. 2010].
- ► Model:

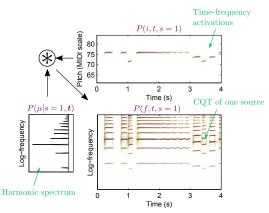
CQT = sum of sources + noise
$$P(f,t) = P(c = h) \sum_{s} P_h(f,t,s) + P(c = b) P_b(f,t)$$

HALCA: source model

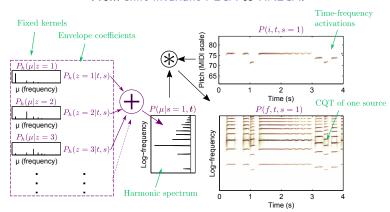
From shift-invariant PLCA to HALCA:



From shift-invariant PLCA to HALCA:

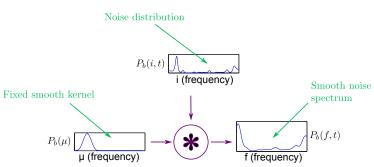


From shift-invariant PLCA to HALCA:



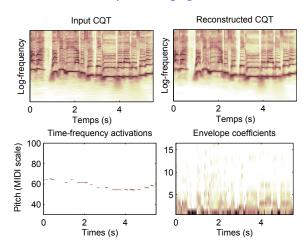
$$P_h(f,t,s) = \sum_{z,i} P_h(i,t,s) P_h(f-i|z) P_h(z|t,s).$$

At time t:



$$P_b(f,t) = \sum_i P_b(i,t) P_b(f-i)$$

Example on singing voice:

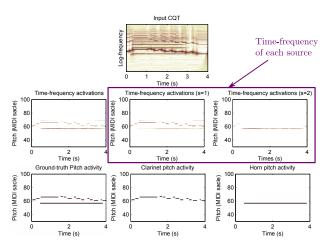


HALCA: addition of plugins

- ▶ Sparse prior on time-frequency activations $P_h(i, t, s)$.
- ▶ Temporal continuity prior on envelope coefficients $P_h(z|t,s)$: continuity of timbre.
- ▶ Brake on envelope coefficients $P_h(z|t,s)$: initialization is relevant.
- ▶ Resemblance prior: not applied here.

HALCA: discussion

Sources do not correspond to real instruments:



LCA. Conclusion

- ► Sources represent meta-instruments:
 - several sources are used to model a single instrument,
 - ▶ one source contributes to the modeling of several instruments.
- ▶ The number of sources can be fixed:
 - a fix number of sources can model an unknown number of instrument.
- Overall time-frequency activations: $P_h(i,t) = \sum_s P_h(i,t,s)$.

But is it relevant to keep the concept of source?

Note-based model: BHAD

BHAD: Blind Harmonic Adaptive Decomposition.

- ▶ Get rid of the concept of sources, but keep an expressive model.
- ► The noise component is kept.

BHAD: Blind Harmonic Adaptive Decomposition.

- ▶ Get rid of the concept of sources, but keep an expressive model.
- ► The noise component is kept.
- From HALCA to BHAD:

$$P_h(f,t,s) = \sum_{z,i} P_h(i,t,s) P_h(f-i|z) P_h(z|t,s).$$

BHAD: Blind Harmonic Adaptive Decomposition.

- ▶ Get rid of the concept of sources, but keep an expressive model.
- ► The noise component is kept.
- From HALCA to BHAD:

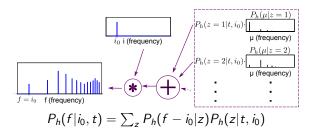
$$P_h(f,t,\mathbf{s}) = \sum_{z,i} P_h(i,t,\mathbf{s}) P_h(f-i|z) P_h(z|t,\mathbf{s}).$$

BHAD: Blind Harmonic Adaptive Decomposition.

- ▶ Get rid of the concept of sources, but keep an expressive model.
- ► The noise component is kept.
- From HALCA to BHAD:

$$P_h(f,t,\mathbf{s}) = \sum_{z,i} P_h(i,t,\mathbf{s}) P_h(f-i|z) P_h(z|t,\mathbf{s},\mathbf{i}).$$

▶ At time t, consider a comb spectrum, of fundamental frequency i_0 :



▶ All values of *i* considered to model a polyphonic spectrum:

$$P_h(f,t) = \sum_{z,i} P_h(i,t) P_h(f|i,t).$$

BHAD: addition of plugins

- ▶ Sparse prior on the time-frequency activations $P_h(i, t)$.
- ▶ Brake on envelope coefficients P(z|t,i).
- Resemblance prior on envelope coefficients P(z|t,i) for given i:
 - account for timbre redundancy of notes over time.
- ▶ Temporal continuity prior: not applied here.

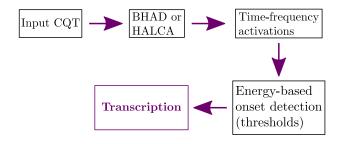
▶ Two new models to factorize CQTs of musical signals.

- ▶ Adaptive models: all parameters depend on time t.
- Possibility to add plugins (priors, brake).

We can now applied those algorithms to music transcription and source separation.

Outline

- Introduction
- 2 State of the art
- **Improving parameters estimation**
- 4 CQT models
- 5 Applications
- 6 Conclusion



Databases and metrics

- ► Three evaluation databases:
 - ► MAPS (piano) [Emiya 2008],
 - MIREX (woodwind quintet),
 - ► QUASI (rock, reggae, song,...).
- Metric to measure transcription quality:
 - ► Recall R,
 - ▶ Precision P.
 - ► F-measure \mathcal{F} .

Transcription systems

- \blacktriangleright HALCA (S=4 sources):
 - \vdash H_4 : no plugins,
 - $\vdash H_4 sb$: sparse prior + brake,
 - $ightharpoonup H_4 sbt$: sparse prior + brake + temporal prior.
- ► BHAD:
 - B: no plugins,
 - \triangleright B sb: sparse prior + brake,
 - \triangleright B sbr: sparse prior + brake + resemblance prior.

Results

Sparse prior and brake: improve performances

Algorithm	MAPS	MIREX	QUASI
H ₄ H ₄ — sb	57.8 [55.6, 61.5] 59.4 [52.3, 70.9]	62.4 [51.4, 79.4] 59.3 [45.7, 84.6]	38.8 [38.1, 41.9] 41.5 [37.9, 50.3]
B B – sb	47.5 [56.1, 41.9] 60.0 [52.8, 71.7]	61.5 [55.5, 69.0] 63.6 [51.3, 83.7]	32.9 [39.7, 32.9] 43.1 [40.0, 52.0]

$$\mathcal{F}$$
 [R,P] (%)

Temporal prior: depends on database

Algorithm	MAPS	MIREX	QUASI
H ₄ – sb	59.4 [52.3, 70.9]	59.3 [45.7, 84.6]	41.5 [37.9, 50.3]
H ₄ – sbt	61.8 [54.9, 73.6]	64.2 [51.7, 84.6]	40.7 [36.8, 49.6]

$$\mathcal{F}$$
 [\mathcal{R} , \mathcal{P}] (%)

Resemblance prior: no a good assumption

Algorithm	MAPS	MIREX	QUASI
B-sb	60.0 [52.8, 71.7]	63.6 [51.3, 83.7]	43.1 [40.0, 52.0]
B-sbr	60.6 [51.6, 76.7]	61.6 [47.4, 88.2]	37.3 [34.3, 46]

$$\mathcal{F}$$
 [R,P] (%)

Results: comparison

► Comparison with two reference algorithms:

Algorithm	MAPS	MIREX	QUASI
H ₄ – sb B – sb	59.4 [52.3, 70.9] 60.0 [52.8, 71.7]	59.3 [45.7, 84.6] 63.6 [51.3, 83.7]	41.5 [37.9, 50.3] 43.1 [40.0, 52.0]
[Vincent <i>et al.</i> 2010] [Dessein <i>et al.</i> 2012]	45.3 [67.0, 35.8] 45.1 [43.3,48.5]	57.9 [81.1, 45.0] 52.0 [48.6, 55.9]	20.3 [63.8, 12.3] 20.9 [33.4, 17.0]

$$\mathcal{F}$$
 [R,P] (%)

▶ Robustness of our algorithms to musical genre.

▶ B - sb has been submitted to MIREX 2012 international competition:

Algorithm	R (%)	P (%)	F (%)
BD2	52.4	38.1	43.0
BD3	46.8	38.2	41.1
CPG1	14.5	54.5	21.9
CPG2	15.1	54.0	22.5
CPG3	19.9	51.5	27.3
FBR2 $(B - sb)$	71.6	55.3	61.3
FT1	3.3	21.8	5.5
KD3 ([Dressler 2012])	65.2	64.7	64.6
SB5	63.5	42.3	49.8

 State of the art
 Improving parameters estimation
 CQT models
 Applications
 Conclusion

 00000
 0000000000
 0000000000
 000000000
 000

Sound example

► Grieg, Violon Sonata:

Original Resynthized

Applications 0000000000

Melody extraction

- ▶ The goal: automatically extract the main melody.
- ► Hybrid model:

input CQT = melody + accompaniment,
=
$$HALCA_s + PLCA$$
.

- ► HALCA_s: source model of HALCA.
- ▶ After estimation of parameters, soft masks can be deduced and source temporal signals estimated.

Supervised source separation



Source separation based on time-frequency masking.

Conclusion

Conclusion

- ▶ Two new models for musical signal analysis, HALCA and BHAD:
 - expressive models,
 - suitable for a large class of signals.
- ► Tools to help parameter estimations:
 - four new priors to account for prior knowledge on signals to analyze,
 - slowing down the convergence of a subset of parameters: cheap and effective,
- Applications:
 - new state of the art transcription algorithms, especially for complex music.
 - two source separation applications.

Perspectives

- Multiply semantic levels for spectrum modeling:
 - from mid-level to low-level representations: e.g. more realistic note spectra models,
 - ▶ from high-level to mid-level representations: e.g. MIDI $notes \leftarrow chroma \leftarrow chords \leftarrow tonality.$
- Work on dynamic modeling:
 - \blacktriangleright MLCATS: modeling energy transitions between t and t+1,
 - modeling onsets/offsets.

 State of the art
 Improving parameters estimation
 CQT models
 Applications
 Conclusion

 00000
 0000000000
 0000000000
 0000000000
 000

The end

Publication:

B. Fuentes, R. Badeau and G. Richard: Harmonic adaptive latent component analysis of audio and application to music transcription. *IEEE TASLP* (accepted), 2013.

B. Fuentes, R. Badeau and G. Richard: Blind Harmonic Adaptive Decomposition Applied to Supervised Source Separation. In Proc. of EUSIPCO, Romania, 2012.

B. Fuentes, A. Liutkus, R. Badeau and G. Richard: Probabilistic Model for main melody extraction using constant-Q transform. *In Proc. of ICASSP*, Japan, 2012.

B. Fuentes, R. Badeau and G. Richard: Analyse des structures harmo-niques dans les signaux audio: modéliser les variations de hauteur et d'enveloppe spectrale. *In GRETSI*, France, 2011.

B. Fuentes, R. Badeau and G. Richard: Adaptive harmonic time-frequency decomposition of audio using shift-invariant PLCA. *In Proc. of ICASSP*, Czech Republic, 2011.

Thank you for you attention!