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What is automatic transcription of music ?

I The goal: a computer program analyzes an audio signal, and identify
the notes.

I One notes: pitch, onset time and duration.

I A difficult problem: all the played notes are mixed.
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Observing data: a note of trumpet
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Observations:

I harmonic spectra,

I temporal evolutions: fundamental frequency and spectral envelope,

I presence of noise.
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What solution? TFR factorizations
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Input polyphonic TFR: V.

I Put forward a TFR model V̂, depending on parameters Λ.

I Find algorithms to estimate Λ, such as:

V̂ (Λ) ≈ V.

The transcription is deduced from Λ.
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Deterministic vs probabilistic frameworks

I Deterministic: minimizing some distance between V and V̂ (Λ) [Lee

and Seung 1999].

I Probabilistic:

I V results from a generative process, depending on Λ,
I Λ is estimated due to an estimator (e.g. ML).

e.g. Probabilistic latent component analysis (PLCA)
[Shashanka 2007].
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PLCA: principle

I Generative process: drawing of many time-frequency bins
(f , t) ∼ P(f , t).

I V is the histogram of the draws: V norm
ft = Vft∑

ft Vft
≈ P(f , t).

I P(f , t) is modeled and depends on Λ.

I Use of EM algorithm to estimate Λ.

How to model P(f , t)?
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PLCA: basic model [Shashanka 2007]

I A column of a CQT: weighted sum of basis spectra (atoms):

P(f , t) =
∑
n

P(n, t)P(f |n) Λ = {P(n, t),P(f |n)} .

I n: a new variable representing an atom (note).

Cannot model notes with time-varying spectra !
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Shift-invariant PLCA: introducing the CQT

CQT: constant-Q transform

I Log. frequency scale: pitch modulation = translation of partials.

A single atom can be used to model different notes.
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Shift-invariant PLCA [Smaragdis et. al. 2008]

I CQT = sum of sources: P(f , t) =
∑

s P(f , t, s).

I Model of one source: P(f , t, s) =
∑

i P(i , t, s)P(f − i |s).
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Limitation: cannot model variations of spectral envelope.
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Contributions

I Create new models of CQT that consider:

I notes having pitch and spectral envelope variations,
I robust to noise.

I Proposing new tools to improve parameter estimation:

I can be applied to any CQT model.

I Applications:

I automatic transcription,
I source separation.
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Addition of priors

I Account for prior information on observation, and therefore on
parameters.

I Two advantages:

I helping the EM algorithm to avoid local maxima,
I making a model more identifiable.

I Four new priors:

I sparseness,
I temporal continuity,
I resemblance,
I monomodality.
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Sparse priors

I Consider the following problem:
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I The input signal does not necessarily contain all 88 notes.

I Order of the model overestimated.

I Idea: sparse prior on P(n, t) = θnt .
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Sparse priors

I l1/2-based sparse prior:

Pr (θ) ∝ exp
(
−2βsparse||θ||1/2

)
with ||θ||1/2 =

∑
n,t

√
θnt .

I Rigorous proof for EM derivation.

Results: temporal activations of atoms
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Temporal continuity priors

I Consider the following problem:
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I What if we suppose P(n, t) ≈ P(n, t − 1)?

I Could help the algorithm converge toward a more meaningful
solution.

I Idea: temporal continuity prior on P(n, t) = θtn.
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Temporal continuity prior

I Based on the ratio between geometric and arithmetic mean:

Pr (θ) ∝

∏
n

∏
t

2

√
θtnθ

t−1
n

θtn + θt−1
n

βtemp

.

I Fixed-point method for EM derivation.

Results: temporal activations of atoms
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Resemblance prior

I Consider the following problem:

I Modeling notes with variations of spectral envelope: use several
atoms per note.

I Cluster the atoms beforehand: atoms in one cluster are similar but
not equal.

I Resemblance prior: applied to Z adjacent basis spectra
{P(f |n = 1), . . . ,P(f |n = Z )} =

{
θ1
f , . . . , θ

Z
f

}
.
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Resemblance prior

I Based on the ratio between geometric and arithmetic mean:

Pr (θ) ∝

(∏
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Z
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z θ
z
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1
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.

I Fixed-point method for EM derivation.

Results: atoms and their temporal activations

Benoit Fuentes PLCA and its adjustments to audio signals. Music transcription and source separation. 14/03/2013 18/48



Introduction State of the art Improving parameters estimation CQT models Applications Conclusion

Slowing down the rate of convergence

Apply a brake to the convergence of a subset of parameters:

I value at the end of the algorithm: closed to initialization,

I avoid local minima,

I make sparser the parameters that are not slowed down.

Simple to implement and effective.
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Slowing down the rate of convergence: example

I Consider the following problem:
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I Brake on P(f |n): makes P(n, t) sparser, like the input.
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Slowing down the rate of convergence: example
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Improving parameter estimation: conclusion

I Tools to help the parameter estimations.

I Can be used with any PLCA-based model, applied to any set of
parameters.

I Now: let us design new models of CQT.
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Source-based model: HALCA

HALCA: Harmonic Adaptive Latent Component Analysis.

I Goal: modeling harmonic instruments having time-varying spectra:

I pitch variations,
I spectral envelope variations.

I Source-based model, inspired by:

I shift invariant PLCA [Mysore and Smaragdis 2009],
I model with harmonic constraint [Vincent et al. 2010].

I Model:

CQT = sum of sources + noise

P(f , t) = P(c = h)
∑
s

Ph(f , t, s) + P(c = b)Pb(f , t)
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HALCA: source model

From shift-invariant PLCA to HALCA:
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Ph(f , t, s) =
∑
z,i

Ph(i , t, s)Ph(f − i |z)Ph(z |t, s).
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HALCA: noise model

At time t:

i (frequency)

*µ (frequency) f (frequency)

Pb(f , t) =
∑
i

Pb(i , t)Pb(f − i)
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HALCA: example

Example on singing voice:
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HALCA: addition of plugins

I Sparse prior on time-frequency activations Ph(i , t, s).

I Temporal continuity prior on envelope coefficients Ph(z |t, s):
continuity of timbre.

I Brake on envelope coefficients Ph(z |t, s): initialization is relevant.

I Resemblance prior: not applied here.
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HALCA: discussion

Sources do not correspond to real instruments:
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HALCA: conclusion

I Sources represent meta-instruments:

I several sources are used to model a single instrument,
I one source contributes to the modeling of several instruments.

I The number of sources can be fixed:

I a fix number of sources can model an unknown number of
instrument.

I Overall time-frequency activations: Ph(i , t) =
∑

s Ph(i , t, s).

But is it relevant to keep the concept of source?
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Note-based model: BHAD

BHAD: Blind Harmonic Adaptive Decomposition.

I Get rid of the concept of sources, but keep an expressive model.

I The noise component is kept.

I From HALCA to BHAD:

Ph(f , t, s) =
∑
z,i

Ph(i , t, s)Ph(f − i |z)Ph(z |t, s).
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Note-based model: BHAD

I At time t, consider a comb spectrum, of fundamental frequency i0:

f (frequency)

i (frequency)

µ (frequency)

µ (frequency)

+*
Ph(f |i0, t) =

∑
z Ph(f − i0|z)Ph(z |t, i0)

I All values of i considered to model a polyphonic spectrum:

Ph(f , t) =
∑
z,i

Ph(i , t)Ph(f |i , t).
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BHAD: addition of plugins

I Sparse prior on the time-frequency activations Ph(i , t).

I Brake on envelope coefficients P(z |t, i).

I Resemblance prior on envelope coefficients P(z |t, i) for given i :

I account for timbre redundancy of notes over time.

I Temporal continuity prior: not applied here.
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CQT models: conclusion

I Two new models to factorize CQTs of musical signals.

I Adaptive models: all parameters depend on time t.

I Possibility to add plugins (priors, brake).

We can now applied those algorithms to music
transcription and source separation.
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Transcription algorithm
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Databases and metrics

I Three evaluation databases:

I MAPS (piano) [Emiya 2008],

I MIREX (woodwind quintet),

I QUASI (rock, reggae, song,...).

I Metric to measure transcription quality:

I Recall R,

I Precision P,

I F-measure F .
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Transcription systems

I HALCA (S = 4 sources):

I H4 : no plugins,

I H4 − sb: sparse prior + brake,

I H4 − sbt: sparse prior + brake + temporal prior.

I BHAD:

I B: no plugins,

I B − sb: sparse prior + brake,

I B − sbr : sparse prior + brake + resemblance prior.
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Results

Sparse prior and brake: improve performances

Algorithm MAPS MIREX QUASI

H4 57.8 [55.6, 61.5] 62.4 [51.4, 79.4] 38.8 [38.1, 41.9]

H4 − sb 59.4 [52.3, 70.9] 59.3 [45.7, 84.6] 41.5 [37.9, 50.3]

B 47.5 [56.1, 41.9] 61.5 [55.5, 69.0] 32.9 [39.7, 32.9]

B − sb 60.0 [52.8, 71.7] 63.6 [51.3, 83.7] 43.1 [40.0, 52.0]

F [R,P] (%)
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Temporal prior: depends on database

Algorithm MAPS MIREX QUASI

H4 − sb 59.4 [52.3, 70.9] 59.3 [45.7, 84.6] 41.5 [37.9, 50.3]

H4 − sbt 61.8 [54.9, 73.6] 64.2 [51.7, 84.6] 40.7 [36.8, 49.6]

F [R,P] (%)

Resemblance prior: no a good assumption

Algorithm MAPS MIREX QUASI

B − sb 60.0 [52.8, 71.7] 63.6 [51.3, 83.7] 43.1 [40.0, 52.0]

B − sbr 60.6 [51.6, 76.7] 61.6 [47.4, 88.2] 37.3 [34.3, 46]

F [R,P] (%)
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Results: comparison

I Comparison with two reference algorithms:

Algorithm MAPS MIREX QUASI

H4 − sb 59.4 [52.3, 70.9] 59.3 [45.7, 84.6] 41.5 [37.9, 50.3]

B − sb 60.0 [52.8, 71.7] 63.6 [51.3, 83.7] 43.1 [40.0, 52.0]

[Vincent et al. 2010] 45.3 [67.0, 35.8] 57.9 [81.1, 45.0] 20.3 [63.8, 12.3]

[Dessein et al. 2012] 45.1 [43.3,48.5] 52.0 [48.6, 55.9] 20.9 [33.4, 17.0]

F [R,P] (%)

I Robustness of our algorithms to musical genre.
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Results: MIREX

I B − sb has been submitted to MIREX 2012 international
competition:

Algorithm R (%) P (%) F (%)

BD2 52.4 38.1 43.0

BD3 46.8 38.2 41.1

CPG1 14.5 54.5 21.9

CPG2 15.1 54.0 22.5

CPG3 19.9 51.5 27.3

FBR2 (B − sb) 71.6 55.3 61.3

FT1 3.3 21.8 5.5

KD3 ([Dressler 2012]) 65.2 64.7 64.6

SB5 63.5 42.3 49.8
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Sound example

I Grieg, Violon Sonata:

Original Resynthized
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Melody extraction

I The goal: automatically extract the main melody.

I Hybrid model:

input CQT = melody + accompaniment,

= HALCAs + PLCA.

I HALCAs : source model of HALCA.

I After estimation of parameters, soft masks can be deduced and
source temporal signals estimated.
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Supervised source separation

I Source separation based on time-frequency masking.
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Conclusion

I Two new models for musical signal analysis, HALCA and BHAD:

I expressive models,
I suitable for a large class of signals.

I Tools to help parameter estimations:

I four new priors to account for prior knowledge on signals to analyze,
I slowing down the convergence of a subset of parameters: cheap and

effective,

I Applications:

I new state of the art transcription algorithms, especially for complex
music,

I two source separation applications.
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Perspectives

I Multiply semantic levels for spectrum modeling:

I from mid-level to low-level representations: e.g. more realistic note
spectra models,

I from high-level to mid-level representations: e.g. MIDI
notes←chroma←chords←tonality.

I Work on dynamic modeling:

I MLCATS: modeling energy transitions between t and t + 1,

I modeling onsets/offsets.
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The end

Publication:

B. Fuentes, R. Badeau and G. Richard: Harmonic adaptive latent component analysis of audio
and application to music transcription. IEEE TASLP (accepted), 2013.

B. Fuentes, R. Badeau and G. Richard: Blind Harmonic Adaptive Decomposition Applied to
Supervised Source Separation. In Proc. of EUSIPCO, Romania, 2012.

B. Fuentes, A. Liutkus, R. Badeau and G. Richard: Probabilistic Model for main melody
extraction using constant-Q transform. In Proc. of ICASSP, Japan, 2012.

B. Fuentes, R. Badeau and G. Richard: Analyse des structures harmo-niques dans les signaux
audio : modéliser les variations de hauteur et d’enveloppe spectrale. In GRETSI, France, 2011.

B. Fuentes, R. Badeau and G. Richard: Adaptive harmonic time-frequency decomposition of
audio using shift-invariant PLCA. In Proc. of ICASSP, Czech Republic, 2011.

Thank you for you attention !
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